Edwin A. Abbott – Flatland: A Romance of Many Dimensions (audiobook)

433567

Grāmatas apraksts no Goodreads/Synopsis from Goodreads:

This masterpiece of science (and mathematical) fiction is a delightfully unique and highly entertaining satire that has charmed readers for more than 100 years. The work of English clergyman, educator and Shakespearean scholar Edwin A. Abbott (1838-1926), it describes the journeys of A. Square, a mathematician and resident of the two-dimensional Flatland, where women-thin, straight lines-are the lowliest of shapes, and where men may have any number of sides, depending on their social status.
Through strange occurrences that bring him into contact with a host of geometric forms, Square has adventures in Spaceland (three dimensions), Lineland (one dimension) and Pointland (no dimensions) and ultimately entertains thoughts of visiting a land of four dimensions—a revolutionary idea for which he is returned to his two-dimensional world. Charmingly illustrated by the author, Flatland is not only fascinating reading, it is still a first-rate fictional introduction to the concept of the multiple dimensions of space. “Instructive, entertaining, and stimulating to the imagination.” — Mathematics Teacher.

Izdevniecība/Publisher: Podiobooks

Kā tiku pie šīs grāmatas?/How I got this book?

Lejuplādēju no www. Izvēlējos no Top 100 Sci-Fi Books grāmatu listes.

Vērtējums/Rating: 3.75/5

Mana recenzija (pārdomas)/My (thoughts) review

Galvenais varonis Kvadrāts vispirms stāstu iesāk ar izklāstu par savu divdimensiju pasauli, kur jo vairāk vienādu malu figūra tu esi un jo tuvāk aplim līdzīgai figūrai kļūsti, jo augstāks tev statuss sabiedrībā. Diemžēl sievietēm šajā ziņā nav nekādu izredžu, jo viņas visas ir tikai līnijas. Savu pasauli Kvadrāts dēvē par Flatland, un uzreiz man radās jautājums pie sevis. Cik plakanam kaut kam ir jābūt, lai tas tiešām būtu divu dimensiju iemītnieks bez jebkādā augstuma? Citiem vārdiem sakot, cik biezs var būt slānis? Bet tādā gadījumā teorētiski nekas nevar pilnībā 100% plakans, jo pat niecīgākā garuma mērvienība tik un tā būs.

Pirms uzzinām, kā Kvadrāts iepazina, kas ir trīs dimensijas jeb Spaceland, Kvadrāts sastop Līnijzemes karali (garāko līniju), kur katram indivīdam/līnijai (vīriešu kārtās) ir divas balsis katra savā galā, tādejādi arī divas sievas (parasti punkti; atkal formā zemākas būtnes). Kvadrāts nesekmīgi cenšas karalim izskaidrot savas pasaules būtu, kas viņu padara vīlušos, neapjēdzot, kā var viņu nesaprast. Bet tad vēlāk Kvadrāts pats sastop būtni (sfēru/lodi), kuru redz kā visperfektāko apli. Kad Lode mēģina apskaidrot, trīsdimensionālu pasauli, objektu formas un kustību iespējamos virzienus, man nesaprašanu radīju, kāpēc gan Kvadrātam stāstītais nepielec no paša pieredzes ar Līnijzemes karali. Tādēļ atliek vien pieņemt, ka tas bijis pēcāk.

Interesanti, ka Plakanajā zemē tiec uzskatīts par anomāliju, ja tavas figūras malas nav vienāda garuma (tāpēc trijstūri ir viszemākā klase). Pašam ģeometrija galīgi nebija tas mīļākais priekšmets ar visām murgainajām pierādīšanām, bet teiksim, kāda vaina trapecei, autoram tādas formas laikam nav patikušas. Kā arī interesanti, ka Līnijzemē visas līnijas ir taisnas, un ne citādāk. Būtu paticis uzzināt, kā un no kā viņi pārtiek, un vai vispār tas nepieciešams.

Īsa (žēl, ka tā), bet ļoti filozofiska un domu raisoša (iespējams par dīvaini ‘’dziļā’’ virzienā) grāmata.

***************************************

The main character A. Square firstly begins his story with the explanation of his two dimensional world’s set-up, where the more side (that are equal) you have the better it is and higher in society you are. Unfortunately for women there is no chance to accomplish anything big as they are just lines. Square calls his country a Flatland, and right away I had a question. How flat something has to be to be flat without any height? In other words, how thick can the layer be? I would ponder that pure and 100% flatness is impossible, because even the tiniest unit of length is something.

Before we find out how Square learned about our 3D world or Spaceland, he himself meets the King of Lineland (the longest of all lines) where each individual/line (males) have a voice on each end and because of that every line has two wives (mere lines, and again lower forms than males). Square is unsuccessful in his attempts to explain his world and where he comes from; that makes him bewildered how someone wouldn’t understand such simple things. But later Square meets a being (a sphere) which he sees just as a circle. When the Sphere tries to explain the 3D world, A Square himself doesn’t understand what is said to him, which makes me think that this is before the Lineland.

It’s interesting that in Flatland you are an anomaly if your sides are not equal in length (that’s why triangles are at the bottom of society). Geometry personally wasn’t my favorite subject in school but I do remember such shapes as trapezium, I guess such shapes weren’t author’s favorites. Also it’s peculiar that in the Lineland all lines have to be completely straight. Would have liked to find out about how and what these creatures eat and that is even necessary for them.

A short book but at the same time makes you think about unusual thing in a deep way, very philosophical.

Advertisements

One thought on “Edwin A. Abbott – Flatland: A Romance of Many Dimensions (audiobook)

Komentēt

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Mainīt )

Twitter picture

You are commenting using your Twitter account. Log Out / Mainīt )

Facebook photo

You are commenting using your Facebook account. Log Out / Mainīt )

Google+ photo

You are commenting using your Google+ account. Log Out / Mainīt )

Connecting to %s